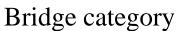


Gdańsk University of Technology

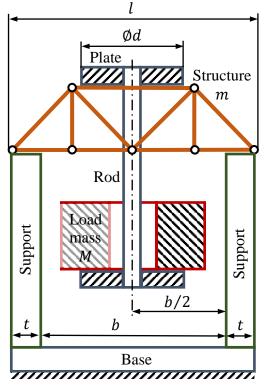
Faculty of Mechanical Engineering and Ship Technology

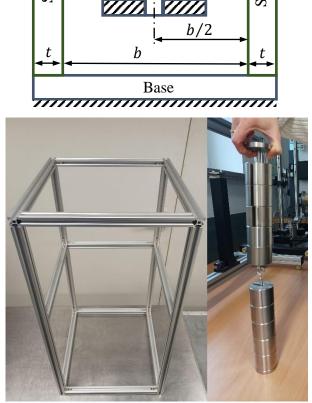
StrongTruss2023

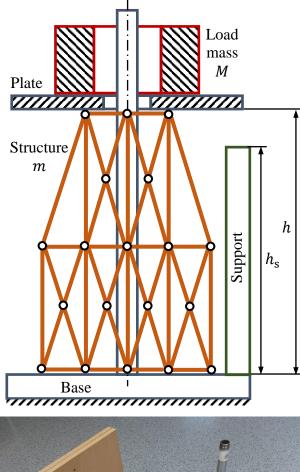
StrongTruss2023 contest is organised at the Faculty of Mechanical Engineering and Ship Technology of Gdańsk University of Technology intended for students.

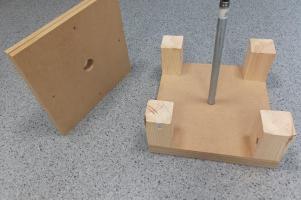

Registration deadline:	13.12.2023
Date of the contest:	15.12.2023
Start of the qualification	
(weighing/measuring):	15:00
Start of the contest:	16:00

Place of the contest: Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland WIMiO, building 40, room 211 (assembly hall) Registration email: <u>wiktor.sieklicki@pg.edu.pl</u> (Wiktor Sieklicki, tower category) <u>oleksii.nosko@pg.edu.pl</u> (Oleksii Nosko, bridge category)


General rules of the contest:


- 1. The contest participant is a team of 1 to 3 people.
- 2. Each team presents one structure.
- 3. The structure must be a truss comprising at least 6 bar elements.
- 4. The structure must be made of wood, paper and glue exclusively.
- 5. The structure must have mass m not exceeding 20 g.
- 6. The winning place in each category is awarded to the team that presented the structure with the highest specific loadcarrying capacity M/m, where M is the load mass.
- The organisation committee has the right to disqualify/penalise a team for violation of the contest rules or unsporting behaviour.


- 1. The structure must have height *h* from 20 to 22 cm and axial hole of diameter larger than 6 cm.
- 2. The structure is tested by placing it on a plane horizontal base and loading axially from the top with a plane horizontal plate.
- 3. The total load mass *M* is increased by adding weights on the plate until the structure collapses, i.e. the plate touches a support of height h_s =16 cm.



- The structure must have length *l* from 32 to 36 cm and vertical hole in its exact horizontal middle of diameter from 3 to 4 cm.
- 2. The structure is tested by placing it on two aluminium supports of width t=2 cm located at distance b=30 cm from each other and loading from the top with a cylindrical plate of diameter d=5 cm connected to a vertical rod.
- 3. The total load mass *M* is increased by adding weights to the rod until the structure collapses, i.e. the rod touches the base.

